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1. INTRODUCTION

Very rarely, realised selection responses agree with those
expected from the selection practised (Dickerson, [3], (4]; Falconer,
[5]; Clayton, Knight, Morris and Robertson, {2]). One of the
causes of discrepancy could be the assumption of normality of
criterion of selection in computing selection intensity when in fact
it follows a non-normal distribution. That quite a few quantitative
traits may depart from the normal form has been borne out by
empirical studies made by various investigators (Pearl and Miner,
[11]); Gowen, [7]; Tocher, [16]; Om Parkash & Mabhajan, [10]; and
Malhotra, [9]). These studies, in addition, show that Pearsonian
system of curves of Type I and Type 11I provide adequate represern-
tation to many types of data in the field of livestcck and poultry
breeding. In a-few cases exponential and lognormal distributions
also fitted well (Kapteyn, [8]; Quesenberry et al.,[14'). Ttis the
purpose of this paper firstly to derive the expressions of selection
intensity for Pearson’s Type I distribution including its derivative,
namely beta-distribution, Type 111 including its derived distributions,
namely gamma, and exponential, and for lognormal distribution as
applicable to large populations, and then to study the percentage
discrepancy in response to selection predicted on the assumption of
normality relative to these non-normal distributions.

2. TBEORETICAL PROCEDURE

In large populations in which the basis of selection, x is distri-
buted according to density function f(x) with mean p and variance
o, the largest phenotypic selection differential, (p,—g) is achieved
through truncated selection, i.e., when all individuals with values of
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x>¢, a point of truncation corrasponding to a fraction p are chosen,
where g, is the average of selected individuals obtained as

Y= J. xf(x) dx, p= I f(x)dx (D

L
p
The intensity of selection 7, which is the standardized phenotypic
selection differential is therefore

1= (ps—p)/o. -(2)
When the distribution is normal it is well known thati= —;— ,

where z is the height of the normal ordinate at the cut-off point c.

If 7 and i* denote the intensity of selection corresponding to
the proportion, p saved from a normal population and that from a
particular non-normal population, the predicted response to selec-
tionin two situations will ' be AG=i rg o, and AG*=i* ry, o4,
where r,, is the accuracy of selection and o, is the genetic standard
deviation. The proportionate discrepancy, D, in the predicted
response to selection on the assumption of normality relative to that
based on actual distribution, therefore, is

Di=(AG—AG*)[\G*=ifi*—1=R*—1, R*=ifi* ..(3)
When R¥>1, the progress is over-estimated ; when it is less than 1,

the progress is underestimated, and when R*=0, the progress
remains unaffected.

3. INTENSITY OF SBLECTION IN NON-NORMAL LARGE POPULATIONS

Following the approach outlined in the previous section, the
expressions for intensity of selection were derived for Pearson’s
Type 1, beta, Pearson’s Type 111, gamma, exponential and log-normal
distributions and are summarised in Table 1 along with the form of
density functions used.

3.1, Pearson’s Type I Distribution

When quantitative character x follows this distribution, the
proportion of selected individuals, p corresponding to the truncation

point ¢ is
as )
1 X X e
p—J y,,[ 1+ a;] [l 'ag] dx
4 .




TABLE 1

Expressions of selection intensity for different non-normal large populations

Form of density function used

Distribution First two moments Intensity of selection (i)
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Exponential f(x)=0e-902, 6>0, x>0 n=1/0, a2=1/02 i=—log, p
1 3 1
f)=—=—exp [~} (log x)?], 0<x < = p=e®, jm—— [(3—p)— -1
)= [ =i [(G—p)— ¢ (log c-1)]
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1
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p is the prqportion saved, and ¢ is the point of truncation corresponding to p.
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1
— [ 2 Y(1—z) "2dz ,

3 B+ 1,n241)

Z='x4—a1
a1+a2 ’

__ cta

T artas

=1—1Iz (n1+41, n2-+1) e (4)

where L(p,q)=B.(p,q)/B(p,q) in which B(p,q,) is the incomplete
beta function tabulated by Karl Pearson [12] for different values

of x=[.00(.01)1] and p, ¢=[0.5(0.5) 11.0(1)50], with p>g.

The mean value of the selected group (w,) which is

where

and

as n

e

[+

can be shown equal to

(a1+-az)(m1+1)
T Pl nzt2) [(1 =p)—Ia(m1+2, n2 +1)]

Hence, using relation (2), the selection intensity is

. (m+DE+ne+3) o
i= i) (1 =p)—1I; (m+2, na+1)] ()

where d=(c+a,)/(a1+az) and ¢ is related to p by expression (4).

From the selection intensities computed (Table 2) for different
values of p and for different sets of parameters covering their entire
range: high/low values of both n, and n2 and high value of one and
low value of the other, it is seen that for curves with long tail toward
low merit, i.e., when n1>ns, the selection intensity is more for higher
values of p (mild selection) than if the distribution were truly normal.
For curves with long tail toward high merit (n1<<ns), the reverse is
the case.

3.2. Beta-distribution. If we let z=(x+a1)/(a1+az), ni=m;—1
and ny,=ms—1, the Pearson’s Type I distribution reduces to beta
distribution, and accordingly the expression of intensity of -selection
shown in Table 1 can be obtained directly from (5).

3.3. Pearson’s Type III Dsitribution. For this distribution with
the deasity function as shown in Table 1, the proportion of selected

1



TABLE 2

Selection intensities for diferent values of p corresponding to different sets of values of the parameters n; and ng of
Pearson’s Type I distribution along with those for normal distribution

Intensity of selection for Pearson Type I distribution

'

Pranortion siccion o
) 4 n=1 nm=2 ny=J ny=48 m=1 ny=48 ny=3.0* ny=4.5* tribution
ny=[ ny=1 ne=2 o= I‘ ny=48 nz =48 no=1.5 ny=1.5
Tol T 1663 153777 L824 1 1185 - 2,148 =~ 1743 -~ 1.552 1481 .. 1755 .
0.3 1.405 1.321 1482 - - 1.039 1.578 1.396 1.322 1.273 1.399
0.3 1.196 1.143 1.228 0.948 1.219 1.156 1.137 1.104 1.159°
0.4 1.010 0.981 1.016 0.843 0.966 0.964 0.938 0.953 0.966
0.5 0.838 0.827 0.827 0.740 0.740 0.800 0.820 0.810 0.798
0.6 0.674 0.677 0.654 10.644 0.562 0.643 0.672 0.670 0.644
0.7 0.513 0.526 0.490 0.522 0.406 0.495 0.524 0.528 0.497
0.8 0.351 0.370 0.330 0.394 0.260 0.349 0.370 0.378 0.349
0.9 0.185 0.203 0.171 0.239 0.132 0.194 0.204 0.214 0.195

*Parameteric values close to those obtained by Malhotra (1973) for rate of lay in poultry.
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individuals, p corresponding to the truncation point ¢ is connected
by the relation

a

p= koj (1+ i)m; SmtDx 4

mil —
€ s zM e w dz, where x4 a=z

am
a+tc
b
mo—Yy
=1— X l(}r)nj-l) dy, on substituting (m+1)z=ay
o
where b=(m+1)(a+tc)la
=1—1I (u, m) ...(6)
_14_|m+1
where u= b/ V(m+]_) and I(u,m)=I e~ xm
o lm+D)

which has been extensively tabulated by Pearson [13] for diﬂ'erent
values of u at intervals of 0.1 and m=—1(0.05) 0(0.1) 5(0.2) 50.

Likewise, the mean of the selected individuals can be shown as

—

un=% [(l—p)-I(\/m 5 m+1)]

b
Hence, i= \/mp—’r-l [(1 —P)—I(W » m+1 ):I (7

Table 3 gives the intensities of selection for different values
of pand m. The selection intensity is more for heavy culling and
less for mild culling than if the distribution were truly normal, and
the departure is pronounced for small values of m.

3.4. Gamma and exponential distributions. Since these distri-
butions are special cases of Pearson’s Type III distribution, the
selection intensities for different values of p for gamma distribution
can be obtained from Table 3 by taking m=k—1 and those for
exponential distribution correspond to the value of m=0 or can be
obtained directly from the relation i=—Ilog. p (Burrows [1)).



TABLE 3

Intensities of selection for different values of p and m for Pearson’s Type IXI distribution along with
those for normal distribution

P;:I’ngm Intensity of selection for Pearson’s Type I1I distribution B zl;:g:';"t’l;;—’sfg{
P normal dis-
m=4 ‘ m=>5 m=1]10 m=15 l m==20 I m=48* tribution
0.1 2.054 2.029 1.964 1.932 1.920 1.866 1.755
0.2 1.542 1.529 1.504 1.490 1.481 1.454 1.399
0.3 1.216 1.215 1.203 1.198 1.194 1.185 1.159
04 0.978 0.978 0.977 0.977 0.976 0.976 - 0.966
0.5 0.776 0.779 0.787 0.791 0.792 0.795 0.798
0.6 0.602 0.607 0.619 0.624 0.627 0.633 0.644
0.7 0.445 0.451 0.465 0.471 0.474 0.483 0.497-
0.8 0.298 0.303 0.316 0.322 0.326 0.336 0.349
0.9 0.155 0.158 0.168 0.174 0.176 0.184 0.195

*Parametric value obtained by Pearl and Miner (1919) for lactation yield and fat content in Ayrshire cows.
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3.5. Log-normal distribution. In this case p and ¢ are related
as

P—J i exp [—3(log x)?] dx

on taking log x=w
= I 1\ exp [—34w?] dw e(8)
r )
log ¢

The average of the selected parents is

1 1
8=— —;Ll 2
b= Iva exp [—}(log x)?] dx
c

%
=_°% [{—¢(log c—1)]
X
where ¢(x)=[ -\/% el gy
0

is the cumulative normal distribution function tabulated by
Sheppard [15] and are reproduced in Fisher & Yates [6]. The
intensity of selection i, therefore, is

1
= ——— +—p)— log c—1 ...(9
o= =)~ (og c—1)] ©
The selection intensities obtained for different values of p=0.1
(0,1) 0.9 are 2.21, 1.28, 0.97, 0.71, 0.52, 0.38, 0.26, 0.16 and 0.08,
respectively, The selection intensity is more for lower values of p
and vice-versa than if the distribution were truly normal.

4. RESULTS

Table 4 gives the percentage discrepancy in responseto selection
relative to beta, gamma, exponential and log-normal distributions.
For simplicity, instead of general Type I and Type III distributions
their derivatives were considered. This would not affect the general
conclusions drawn.

1n case the actual distribution is of beta form with my,=ms,
the response under normality is over-estimated to the same extent
for extremely heavy and extremely low cullings.
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For values of p ranging from 0.2 to 0.8, the progress is under-
estimated for low values of the parameters and overestimated for
bigh values. For low values of both m; and ma the underestimation
reaches its maximum of 5 per cent at p=0.5 and decreases as the
value of p deviates from 0.5 on either side. On the other hand, for
high values of the two parameters, the overestimation increases as
the value of p deviates from half on either side, but never exceeds
one per cent. For values of m1>mg, the response is overestimated
for intense selection and underestimated for mild selection. The
overestimation for low values of p is prorortionately more than
underestimation for high values of p. For the highly peaked curves,
for example, when m1=49 and me=2 the progress is overestimated
by as much as 50 per cent for heavy culling and underestimated
by as much as 20 per cent for low culling. When mi<mq, the
results are exactly the reverse as those for m>ma.

The percentage discrepancy when the basis of selection is
distributed as gamma decreases with the increase in the value of
k, i.e., with the decrease in the degree of skewness and kurtosis. The
response is underestimated for heavy culling and overestimated
for mild culling. The under estimation does not exceed 24 per cent
even for extreme culling (p=0.1) and for extreme departures from
symmetry and flatness (when k=1). On the other hand, the over-
estimation of progress in such a situation under mild culling (p=0.9)
can exceed by as much as 86 per cent of that expected under normal
form. For large values of k£ >49, the maximum discrepancy is only
of theorder of 6 per cent for all values of p.

When the criterion of selection follows an exponential distribu-
tion, the progress is underestimated by about 25 per cent for intense
selection, and overestimated by as much as 86 per cent for mild
selection, if normal approximation is assumed. Except when p is in
the neighbourhood of 0.3 to 0.4, it is not advisable to use the .
normal approximation as the discrepancy for other values of p is
rather too serious to ignore.

The predicted response using normal approximation for log-
normal distribution is always an overestimate for all values of p>
0.2 and the overestimation increases with the decrease in the rigour
of selection. For very mild selsctions the overestimation is as high
as 150 per cent.

5. CONCLUSIONS

The Pearson’s Type 1 and Type 1II distributions and their
derivatives viz., beta and gamma distributions fer parametric values
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characterizing common situations can be approximated to normal dis-
tribution for moderately heavy and low cullings without any serious
error in the predicted response to selection. However, the use of
normal approximation for expornential and log-normal distributions
is not warranted as the discrcpancy in response to selection for
almost all values of p, the proportion of individuals saved, is too
serious to ignore.

SUMMARY

The expressions for intensity of selection appropriate for large
populations have been derived for Pearson”s Type I, beta, Pearson’s
Type 1II, gamma, exponeuntial and log-normal distributions and
compared with the corresponding expression for normal distribution
to investigate the effect of using normal approximation in predicting
response to selection when the criterion of selection follows one of
these non-normal distributions. Excepting the exponential and log-
normal, other distributions can be approximated to mnormal.
distribution for moderately heavy and low cullings without any
serious discrepency in response to selection,
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